Package: lgpr 1.2.4
lgpr: Longitudinal Gaussian Process Regression
Interpretable nonparametric modeling of longitudinal data using additive Gaussian process regression. Contains functionality for inferring covariate effects and assessing covariate relevances. Models are specified using a convenient formula syntax, and can include shared, group-specific, non-stationary, heterogeneous and temporally uncertain effects. Bayesian inference for model parameters is performed using 'Stan'. The modeling approach and methods are described in detail in Timonen et al. (2021) <doi:10.1093/bioinformatics/btab021>.
Authors:
lgpr_1.2.4.tar.gz
lgpr_1.2.4.zip(r-4.5)lgpr_1.2.4.zip(r-4.4)lgpr_1.2.4.zip(r-4.3)
lgpr_1.2.4.tgz(r-4.5-x86_64)lgpr_1.2.4.tgz(r-4.5-arm64)lgpr_1.2.4.tgz(r-4.4-x86_64)lgpr_1.2.4.tgz(r-4.4-arm64)lgpr_1.2.4.tgz(r-4.3-x86_64)lgpr_1.2.4.tgz(r-4.3-arm64)
lgpr_1.2.4.tar.gz(r-4.5-noble)lgpr_1.2.4.tar.gz(r-4.4-noble)
lgpr.pdf |lgpr.html✨
lgpr/json (API)
# Install 'lgpr' in R: |
install.packages('lgpr', repos = c('https://jtimonen.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/jtimonen/lgpr/issues
- testdata_001 - A very small artificial test data, used mostly for unit tests
- testdata_002 - Medium-size artificial test data, used mostly for tutorials
bayesian-inferencegaussian-processeslongitudinal-datastancpp
Last updated 7 months agofrom:bb45f955b4. Checks:1 OK, 11 NOTE. Indexed: yes.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Mar 11 2025 |
R-4.5-win-x86_64 | NOTE | Mar 11 2025 |
R-4.5-mac-x86_64 | NOTE | Mar 11 2025 |
R-4.5-mac-aarch64 | NOTE | Mar 11 2025 |
R-4.5-linux-x86_64 | NOTE | Mar 11 2025 |
R-4.4-win-x86_64 | NOTE | Mar 11 2025 |
R-4.4-mac-x86_64 | NOTE | Mar 11 2025 |
R-4.4-mac-aarch64 | NOTE | Mar 11 2025 |
R-4.4-linux-x86_64 | NOTE | Mar 11 2025 |
R-4.3-win-x86_64 | NOTE | Mar 11 2025 |
R-4.3-mac-x86_64 | NOTE | Mar 11 2025 |
R-4.3-mac-aarch64 | NOTE | Mar 11 2025 |
Exports:add_dis_ageadd_factoradd_factor_crossingadjusted_c_hatbetclear_postproccomponent_infocomponent_namescontains_postproccovariate_infocreate_modeldraw_predfit_summarygamget_drawsget_modelget_predget_stanfitigamis_f_sampledlgplog_normalmodel_summarynew_xnormalnum_componentsnum_evalpointsnum_paramsetsoptimize_modelparam_summaryparameter_infoplotplot_betaplot_componentsplot_dataplot_drawsplot_effect_timesplot_fplot_predplot_simplot_warppostprocppcpredprior_predread_proteomics_datarelevancessample_modelsample_param_priorselectselect_freqselect_freq.integrateselect.integrateshowsimulate_datasplit_by_factorsplit_datasplit_randomsplit_within_factorsplit_within_factor_randomstudent_tuniform
Dependencies:abindbackportsbayesplotBHbitopscallrcheckmateclicolorspacedescdistributionaldplyrfansifarvergenericsggplot2ggridgesgluegridExtragtableinlineisobandlabelinglatticelifecycleloomagrittrMASSMatrixmatrixStatsmgcvmunsellnlmenumDerivpillarpkgbuildpkgconfigplyrposteriorprocessxpsQuickJSRR6RColorBrewerRcppRcppEigenRcppParallelRCurlreshape2rlangrstanrstantoolsscalesStanHeadersstringistringrtensorAtibbletidyselectutf8vctrsviridisLitewithr